Abstract

Body weight is tightly regulated by a feedback mechanism involving peripheral adiposity signals and multiple central nervous system neurotransmitter pathways. Despite the tight regulation of body weight there is an increase in the prevalence of obesity and overweight in Western society. Obesity and overweight are conditions of excess body weight stored as fat. Syndecan-3, a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel a regulator of feeding behavior and body weight. Syndecans are extracellular matrix molecules (ECMs) that modulate cell adhesion, cell–cell interactions and ligand–receptor interactions. The finding that syndecan-3 can regulate body weight is novel and provides a unique link between the extracellular matrix and body weight regulatory mechanisms. Uniquely, hormones such as leptin previously thought only to regulate body weight by modulating neuropeptide levels, have now been demonstrated to regulate neuronal plasticity in the hypothalamus. ECMs and syndecans have long been recognized as regulators of plasticity. Therefore, this review will focus on highlighting the role of syndecans and in particular syndecan-3 in neuronal development and synaptic organization and how these processes may integrate body weight regulation. As part of this review, we will highlight how syndecan-3 can mediate the activity of adiposity signals, such as leptin, and facilitate changes in neuronal plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.