Abstract

Respiratory syncytial virus (RSV) is a common, contagious infection of the lungs and the respiratory tract. RSV is characterized by syncytia, which are multinuclear cells created by cells that have fused together. We use a mathematical model to study how different assumptions about the viral production and lifespan of syncytia change the resulting infection time course. We find that the effect of syncytia on viral titer is only apparent when the basic reproduction number for infection via syncytia formation is similar to the reproduction number for cell free viral transmission. When syncytia fusion rate is high, we find the presence of syncytia can lead to slowly growing infections if viral production is suppressed in syncytia. Our model provides insight into how the presence of syncytia can affect the time course of a viral infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.