Abstract

In winter 1992/1993, a persistent local maximum in fluorescence, dissolved iron, dissolved aluminium and dissolved inorganic phosphate was found, upstream of the turbidity maximum in the freshwater zone of the Ems estuary (The Netherlands — Federal Republic Germany; western Europe). Upstream of this local maximum values ranged from 6 to 9 rel. units fluorescence, 0.9 to 2.4 μmol dm−3 iron, 0.5 to 0.7 μmol dm−3 aluminium and 0.6 to 2.3 μmol dm−3 dissolved inorganic phosphate. Within the maximum peak values of 24 rel. units fluorescence, 5.8 μmol dm−3 iron, 1.4 μmol dm−3 aluminium and 8.3 μmol dm−3 dissolved inorganic phosphate were observed. Downstream, fluorescence (indicator of dissolved organic carbon) showed conservative mixing with sea water, whereas dissolved iron, aluminium and dissolved inorganic phosphate did not. Dissolved aluminium and iron were quickly removed from solution to reach values of ∼100 nmol dm−3 aluminium and ∼0.3 μmol·dm−3 Fe at salinities of approximately 7 PSU. Further seaward iron concentrations gradually decreased to levels below 0.04 μmol dm−3. Dissolved aluminium first decreased to ∼20 nmol dm−3 at 29 PSU and increased again to concentrations of 30–44 nmol dm−3 at higher salinities. Dissolved inorganic phosphate, however, first decreased to upstream concentrations before reaching a secondary peak in the mid-estuarine reaches. At salinities >25 PSU dissolved inorganic phosphate mixed conservatively with sea water. It is hypothesized that adsorption-desorption equilibria are responsible for the local maximum values of fluorescence (DOC), iron, aluminium and dissolved inorganic phosphate. The similarity between the observed curves suggests a common underlying process, possibly related to the adjustment of new equilibria between suspended matter of marine and riverine origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call