Abstract
We previously showed that the lung of the central Australian lizard, Ctenophorus nuchalis, contains a large amount of surfactant, the composition of which varies with body temperature. We now show that the specific compliance of the lungs of these lizards remains constant regardless of whether they were maintained at 10, 18, 27, 37 or 43°C for 4 hours. In contrast, the opening pressure was constant up to 27°C, but decreased at 37 and 43°C. When we lavaged the lungs in situ to remove the majority of surfactant, specific compliance decreased while opening pressure increased. The lungs of C. nuchalis are essentially two bubbles, with the left one larger at low and intermediate volumes. After collapsing both lungs, the larger left lung always inflated first. However, following lavage the smaller right lung inflated first. As the larger lung, when collapsed, would have a much greater area of epithelial contact, this result is consistent with surfactant acting as an ‘antiglue’. During deflation the smaller lung collapsed first, consistent with the law of Laplace. Compliance did not change in the saline-filled lung suggesting that the gas-liquid interface does not play a major role. We conclude that in the lungs of these lizards, surfactant is acting as an antiglue. This might be important during periods of apnea at low body temperatures, when residual volume is small and epithelial surfaces may come into contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.