Abstract

The surface hydrology of a semi-arid area of patterned vegetation in south-west Niger is described. In this region alternating bands of vegetation and bare ground aligned along the contours of a gently sloping terrain give rise to a phenomenon known as `brousse tigrée' (tiger bush). At the selected study site the vegetation bands are 10–30 m wide, separated by 50–100-m-wide bands of bare ground. Five species of shrub dominate, Guiera senegalensis, Combretum micranthum, C. nigricans, Acacia ataxacantha and A. macrostachya. Herbaceous vegetation is generally limited to the upslope edges of vegetation bands. A comprehensive field programme was undertaken to investigate the hydrology. Topographic, vegetation and surface feature surveys were carried out in conjunction with the measurement of rainfall, surface and subsurface hydraulic conductivity, particle size and soil moisture content. Four types of vegetation class are recognised, each tending to occupy a constant position relative to the others and to the regional slope. In a downslope direction the classes are: bare ground, grassy open bush, closed bush, bare open bush, bare ground etc. The nature of the ground surface is closely linked to the vegetation class. Over the bare, bare open and grassy open classes various types of surface crust are present with each type of crust tending to occupy a constant position on the regional slope relative to the vegetation class and other crust types. Below closed bush crusts are generally absent. The typical downslope sequence from the downslope boundary of a vegetation band is: structural (sieving) crust→erosion crust→(gravel crust)→sedimentation crust→microphytic sedimentation crust→no crust→sieving crust, etc. It is also shown that these crust types are dynamic and evolve from one to the other as hydrological conditions change. Hydraulic conductivities of surface crusts are low, typically falling within the range 10 −6–10 −7 m s −1. The presence of large expanses of crust over bare regions tends to generate run-off, which moves down the regional slope to be intercepted and pond within and just upslope of vegetated areas. Such run-off concentrates rainfall by a factor of up to 3.7 below vegetated areas. This concentration combined with an absence of crust development in closed bush areas promotes rapid infiltration below and just upslope of vegetation bands. In this way the hydrology of the area operates to ensure that the bulk of the rain which falls is directed as quickly as possible to the areas where it is most needed to support the existing vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.