Abstract

It is well known that many porous media such as rocks have heterogeneities at nearly all scales. We applied Biot's poroelastic theory to study the propagation of elastic waves in isotropic porous matrix with spherical inclusions. It is assumed that the heterogeneity dimension exceeds significantly the pore size. Modified boundary conditions on poroelastic interface are used to take into account the surface tension effects. The effective wavenumber is calculated using the Waterman and Truell multiple scattering theory, which relates the effective wave number to the amplitude of the wave field scattered by a single inclusion. The calculations were performed for a medium containing fluid-filled cavities or porous inclusions contrasting in saturating fluid elastic properties. The results obtained show that when we consider elastic wave propagation in poroelastic medium containing soft inclusions, it is necessary to take into account the capillary pressure. The influence of the surface tension depends on the diffraction parameter and it is a maximum in the low frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call