Abstract

Bimetallic PtGe and PtIn catalysts were prepared over Vulcan carbon (VC) and multiwall carbon nanotubes (NT) by conventional impregnation method (CI). These supports were functionalized with citric or nitric acid. The structural and electrochemical characteristics of the different functionalized supported catalysts were analyzed in order to determine the influence of the functional groups. The methods applied were temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), cyclohexane dehydrogenation reaction (CHD), and CO stripping. The functionalization treatment with citric or nitric acid eases CO oxidation to CO2, decreasing poisoning effect of CO over Pt, due to the development of oxygenated groups on support surfaces and in the nearby Ge and In. Bimetallic catalysts supported on carbons functionalized with HNO3 present increasing electrochemical active surface values, indicating a better electrochemical behavior than the corresponding monometallic catalysts. DMFC experiments show a very good behavior of PtGe catalysts, mainly for those supported on HNO3-functionalized NT, reaching a maximum power density of 80 mW cm−2. Conversely, PtIn catalysts exhibit a very poor behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.