Abstract

The atmospheric mixing layer height (MLH) is a critical variable for understanding and constraining ecosystem and climate dynamics. Past MLH estimation efforts have largely relied on data with low temporal (radiosondes) or spatial (reanalysis) resolutions. This study is unique in that it utilized continuous point-based ceilometer- and radiosonde-derived measurements of MLH at surface flux tower sites to identify the surface influence on MLH dynamics. We found a strong correlation (R2 = 0.73-0.91) between radiosonde MLH and ceilometer MLH at two sites with co-located observations. Seasonally, mean MLH was the highest at all sites during the summer, while the highest annual mean MLH was found at the warm and dry sites, dominated by high sensible heat fluxes. At daily time scales, surface fluxes of sensible heat, latent heat, and vapor pressure deficit had the largest influence on afternoon MLH. However, at best, the identified forcing variables and surface fluxes only accounted for ∼38-65% of the variability in MLH under all sky conditions, and ∼53-76% of the variability under clear skies. These results highlight the difficulty in using single-point observations to explain MLH dynamics but should encourage the use of ceilometers or similar atmospheric measurements at surface flux sites in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.