Abstract

NiCr single splats were plasma-sprayed on aluminum and stainless steel substrates, which were modified by immersion in boiling water, to grow specific types of oxide/oxyhydroxide on the surface. It was observed that there was no splat formation on aluminum substrate. In contrast, a significant number of splats were formed on stainless steel substrate. The differences in splat formation on aluminum and stainless steel surfaces corresponded to the variations of thickness and proportions of the oxide/oxyhydroxide layer on the surfaces. A three-dimensional numerical model was developed to simulate the impact of a droplet onto the substrate. The simulation illustrated good agreement with experimental observations. The effect of the oxide layer on the splat morphology was also examined. It was suggested that the splat morphology was more strongly influenced by water release from the dehydration of oxyhydroxide to oxide rather than by simple presence of the oxide layer on the substrate surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.