Abstract
Subglacial water can significantly affect the velocity of ice streams and outlet glaciers of ice sheets. Depending on the geometry and capacity of the subglacial hydrologic system, increased surface melting in Greenland over the coming decades may influence the ice sheet's mass balance. Furthermore, subglacial lakes in Antarctica can modulate ice velocities and act as nucleation points for new fast-flowing ice streams. In the coming decades, significant changes in the polar regions will increase the contribution of ice sheets to global sea-level rise. Under the ice streams and outlet glaciers that deliver ice to the oceans, water and deformable wet sediments lubricate the base, facilitating fast ice flow. The influence of subglacial water on fast ice flow depends on the geometry and capacity of the subglacial hydrologic system: water moving rapidly through a well-connected system of conduits or channels will have little impact on ice-sheet velocities, but water injected into a spatially dispersed subglacial system may reduce the effective pressure at the base of the ice sheet, and thereby trigger increased ice-sheet velocities. In Greenland, the form of the subglacial hydrologic system encountered by increasing surface melt water will determine the influence of changing atmospheric conditions on ice-sheet mass balance. In Antarctica, subglacial lakes have the capacity to both modulate velocities in ice streams and outlet glaciers and provide nucleation points for new fast ice-flow tributaries. Climate models of ice-sheet responses to global change remain incomplete without a parameterization of subglacial hydrodynamics and ice dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.