Abstract
The heat shock response is a critical mechanism by which organisms buffer effects of variable and unpredictable environmental temperatures. Upregulation of heat shock proteins (Hsps) increases survival after exposure to stressful conditions in nature, although benefits of Hsp expression are often balanced by costs to growth and reproductive success. Hsp-assisted folding of variant polypeptides may prevent development of unfit phenotypes; thus, some differences in Hsp expression among natural populations of ectotherms may be due to interactions between enzyme variants (allozymes) and Hsps. In the Sierra willow leaf beetle Chrysomela aeneicollis, which lives in highly variable thermal habitats at the southern edge of their range in the Eastern Sierra Nevada, California, allele frequencies at the enzyme locus phosphoglucose isomerase (PGI) vary across a climatic latitudinal gradient. PGI allozymes differ in kinetic properties,and expression of a 70 kDa Hsp differs between populations, along elevation gradients,and among PGI genotypes. Differences in Hsp70 expression among PGI genotypes correspond to differences in thermal tolerance and traits important for reproductive success, such as running speed, survival and fecundity. Thus, differential Hsp expression among genotypes may allow functionally important genetic variation to persist, allowing populations to respond effectively to environmental change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.