Abstract

Rather recent experimental results demonstrate the non-negligible role of mechanical stress in the growth of a multicell spheroid. In this paper we discuss a theoretical framework for volumetric growth suitable for modeling the growth of soft tissues exhibiting the properties of a solid. After a proper kinematic decomposition, balance equations for mass, momentum and energy are discussed together with constitutive relationships. The mathematical model is then applied to avascular tumor growth. We show by numerical simulation that, under assumption of spherical symmetry, the mathematical model is able to reproduce the experimental data with a satisfying qualitative agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call