Abstract

AbstractFlash flooding is strongly modulated by the spatial and temporal variability in heavy precipitation. Storm motion prompts a continuous change of rainfall space-time variability that interacts with the drainage river system, thus influencing the flood response. The impact of storm motion on hydrological response is assessed for the 28 September 2012 flash flood over the semi-arid and medium-sized Guadalentín catchment in Murcia, southeastern Spain. The influence of storm kinematics on flood response is examined through the concept of ‘catchment-scale storm velocity’. This variable quantifies the interaction between the storm system motion and the river drainage network, assessing its influence on the hydrograph peak. By comparing two hydrological simulations forced by rainfall scenarios of distinct spatial and temporal variability, the role of storm system movement on the flood response is effectively isolated. This case study is the first to: (i) show through the catchment-scale storm velocity how storm motion may strongly affect flood peak and timing; and (ii) assess the influence of storm kinematics on hydrological response at different basin scales. In the end, this extreme flash flooding provides a valuable case study of how the interaction between storm motion and drainage properties modulate hydrological response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.