Abstract

Oestrogen sulphamates have increased systemic, but reduced hepatic oestrogenicity which results from their sequestration and transport through the liver by red blood cells. Oestrogen sulphamates act as prodrugs for the release of natural oestrogens but, as yet, there is little information as to how the sulphamoyl moiety is cleaved from the steroid nucleus. In the present investigation we have used the potent steroid sulphatase (STS) inhibitor, 667 COUMATE, to explore the possibility that STS might be responsible for the hydrolysis of oestrogen sulphamates. Administration of oestrone sulphamate (10 μg/day, s.c., for 5 days) to ovariectomised rats resulted in a 3.5-fold increase in the uterine weights of treated animals. Co-administration of oestrone sulphamate and 667 COUMATE (2 mg/kg) completely blocked STS activity in treated animals and completely abrogated the ability of oestrone sulphamate to stimulate uterine growth. In vitro studies, using [ 3H]oestrone sulphamate or [ 3H]oestrone, revealed that the uptake of the sulphamate derivative (95.9 ± 2.4%) by red blood cells was considerably higher than that for the non-sulphamoylated oestrogen (25.1 ± 1.9%). Results from these studies demonstrate convincingly that STS is the enzyme responsible for the removal of the sulphamoyl group from oestrogen sulphamates. This enzyme therefore has a crucial role in regulating the oestrogenicity associated with this class of drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.