Abstract

We show that in the presence of disruptive selection, spatial distributions of sexually reproducing organisms with local mating neighborhoods give rise to symmetry breaking and spontaneous pattern formation in the genetic composition of local populations. Global dynamics follows conventional coarsening of systems with non-conserved order parameters in statistical physics. These patterns interact with boundary and internal barrier structures so as to generate counter-intuitive increases in diversity in patches with high perimeter-to-core ratios. The results have significant implications for the creation and maintenance of biological diversity and species formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.