Abstract

Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like 140Pr58+, 142Pm60+ and 122I52+. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays.In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to the effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β+-decay branch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call