Abstract

We show that a Bose-Einstein condensate consisting of dark excitons forms in GaAs coupled quantum wells at low temperatures. We find that the condensate extends over hundreds of micrometers, well beyond the optical excitation region, and is limited only by the boundaries of the mesa. We show that the condensate density is determined by spin-flipping collisions among the excitons, which convert dark excitons into bright ones. The suppression of this process at low temperature yields a density buildup, manifested as a temperature-dependent blueshift of the exciton emission line. Measurements under an in-plane magnetic field allow us to preferentially modify the bright exciton density and determine their role in the system dynamics. We find that their interaction with the condensate leads to its depletion. We present a simple rate-equations model, which well reproduces the observed temperature, power, and magnetic-field dependence of the exciton density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.