Abstract

In a high-pressure experimental study of reactions and possible melt products occurring in the deep continental crust or in subducted oceanic crust, sphene has been identified over a pressure range of 10–18 kbar and to temperatures of 1020°C. Sphene may be a refractory phase with up to 60% partial melting for hydrous mafic compositions. Sphene breaks down at lower pressure than the maximum pressure stability of amphibole in hydrous mafic compositions, and rutile rather than sphene is the important Ti-bearing accessory phase at pressures greater than 16–18 kbar. Sphene and rutile coexist to pressures as low as 14 kbar. This implies that amphibole eclogites containing primary sphene and no rutile have most likely formed at depths less than 45 km. The presence of minor sphene as a residual phase in equilibrium with low-Ti silicic liquids may have a marked effect on the REE distribution in derivative liquids. Thus melts in equilibrium with a garnet and sphene-bearing residuum may have less light-REE-enriched patterns than those predicted when garnet is a residual phase without coexisting sphene. This effect is modelled using REE patterns for sphenes from high-grade metamorphic terrains of western Norway. Both the new REE data and the experimental study have important implications for the genesis of low-Ti magmas formed in continental margins and island arcs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.