Abstract

Sound localization cues generally include interaural time difference, interaural intensity difference, and spectral cues. The purpose of this study is to investigate the important spectral cues involved in so-called head related transfer functions (HRTFs) using a combination of HRTF analyses and a virtual sound localization (VSL) experiment. Previous psychoacoustical and physiological studies have both suggested the existence of spectral modulation frequency (SMF) channels for analyzing spectral information (e.g., the spectral cues coded in HRTFs). SMFs are in a domain related to the Fourier transform of HRTFs. The relationship between various SMF regions and sound localization was tested here by filtering or enhancing HRTFs in the SMF domain under a series of conditions using a VSL experiment. Present results revealed that azimuth localization was not significantly affected by HRTF manipulation. Applying notch filters between 0.1 and 0.4 cyclesoctave or between 0.35 and 0.65 cyclesoctave resulted in significantly less accurate elevation responses at low elevations, while spectral enhancement in these two SMF regions did not produce a significant change in sound localization. Likewise, low-pass filtering at 2 cyclesoctave did not significantly influence localization accuracy, suggesting that the major cues for sound localization are in the SMF region below 2 cyclesoctave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call