Abstract
This paper examines the predictive power of five linear hedonic pricing models for the residential market with varying levels of complexity in their spatial and temporal structures. Unlike similar studies, we extend the out-of-sample forecast evaluation to one-day-ahead predictions with a rolling estimation window, which is a reasonable setting for many practical applications. We show that the in-sample fit and cross-validation prediction accuracy improve significantly when we account for spatial heterogeneity. In particular, for one-day-ahead forecasts, the spatiotemporal autoregressive (STAR) model demonstrates its superiority over model specifications with alternating spatial and temporal heterogeneity and dependence structures. In addition, sub-market fixed effects, constructed on the basis of statistical TREE methods, improve the results of predefined local rental markets further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.