Abstract

Like many reefs worldwide, reefs in French Polynesia are experiencing a shift from coral-dominated to algal-dominated systems. The macroalga Turbinaria ornata comprises the majority of the increasing algal biomass on the barrier reefs surrounding these islands, and its distribution is increasing throughout this region. Aspects of the ecomorphology of Turbinaria make it ideally suited to thrive under the physical conditions found across barrier reefs throughout French Polynesia. Spatial morphological variation allows Turbinaria to produce morphotypes that are suited either to the calm, unidirectional, slowly flowing water in the backreef or to the high-energy wave-driven flow of the forereef. Backreef plants are flexible and produce airbladders that make them buoyant, whereas forereef plants are not buoyant, but strong and stiff. Production of bladders and resulting buoyancy has been found to be a phenotypically plastic trait in response to movement of water and confers advantages to backreef plants and plays an important role in dispersal. Ontogenetic variation of buoyancy, material properties, and reproductive capacity is part of a dispersal strategy whereby fertile, buoyant fronds drift between oceanic islands and form new populations, thereby contributing to the recent expansion of range of T. ornata across French Polynesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call