Abstract

SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14) catalyses the interconversion of polyols and ketoses (e.g. sorbitol ⟷ fructose). Using two independent Arabidopsis thaliana (L.) Heynh. sdh knockout mutants, we show that SDH (At5g51970) plays a primary role in sorbitol metabolism as well as an unexpected role in ribitol metabolism. Sorbitol content increased in both wild-type (WT) and mutant plant leaves during drought stress, but mutants showed a dramatically different phenotype, dying even if rewatered. The lack of functional SDH in mutant plants was accompanied by accumulation of foliar sorbitol and at least 10-fold more ribitol, neither of which decreased in mutant plants after rewatering. In addition, mutant plants were uniquely sensitive to ribitol in a concentration-dependent manner, which either prevented them from completing seed germination or inhibited seedling development, effects not observed with other polyols or with ribitol-treated WT plants. Ribitol catabolism may occur solely through SDH in A. thaliana, though at only 30% the rate of that for sorbitol. The results indicate a role for SDH in metabolism of sorbitol to fructose and in ribitol conversion to ribulose in A. thaliana during recovery from drought stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.