Abstract
Motivated by loop closure during protein folding and DNA packing, we systemically studied the effects of the solvent quality and chain stiffness on the thermodynamics and kinetics of the end-to-end contact formation for semiflexible polymer chains with reactive ends by Langevin dynamics simulations. In thermodynamics, a rich variety of products of the end-to-end contact have been discovered, such as loop, hairpin, toroid, and rodlike bundle, the populations of which are dependent on the solvent quality and chain stiffness. In kinetics, the overall pathways to form the end-to-end contact have been identified. The change of solvent quality and chain stiffness can tune the roughness of energy landscape and modulate the kinetic partitioning of the end-to-end contact formation pathways, leading to differing kinetic behaviors. In good or poor solvents, the first end-to-end contact rate k c decreases with increasing the strength of bending stiffness k θ monotonically. In very poor solvents, however, the dependence of the logarithm of the first end-to-end contact rate ln k c on k θ exhibits erratic behavior, which stems from more rugged energy landscape due to the polymer chain getting trapped into the intermediate state composed of the rodlike bundles with two ends in separation. For semiflexible chains, with increasing chain length N, the rate k c increases initially and then decreases: in good solvents, the rate k c exhibits a power-law relationship to chain length N with an exponent of ∼-1.50 in the region of long chains, which is in good agreement with the value derived from the experiment in the asymptotic limit of large N; and in poor solvents, the rate k c exhibits a significantly stronger chain length dependence than those observed in good solvents in the region of long chains due to frustration to form the end-to-end contact along a specific path, especially the scaling exponent between the rate k c and chain length N is ∼-3.62 for the case of polymer chains with k θ = 4 at the solvent quality ε ij = 1, in accord with the value obtained from the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.