Abstract

We use a coarse-grained solvent model to study the self-assembly of two nanoscale hydrophobic particles in water. We show how solvent degrees of freedom are involved in the process. By using tools of transition path sampling, we elucidate the reaction coordinates describing the assembly. In accord with earlier expectations, we find that fluctuations of the liquid-vapor-like interface surrounding the solutes are significant, in this case leading to the formation of a vapor tunnel between the two solute particles. This tunnel accelerates assembly. While considering this specific model system, the approach we use illustrates a methodology that is broadly applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.