Abstract

The effect of stress on storage particles within a lithium-ion battery, while acknowledged, is not fully understood. In this study we identify the importance of solid mechanics in the performance and reliability of the system. We identify three non-dimensional parameters that govern the stress response within a spherical storage particle, and we describe the results of numerical simulations that characterize particle stresses. The non-dimensional groups contain system parameters such as the diffusion coefficient, the particle radius, the lithium partial molar volume and the host material's Young's modulus. Stress maps are presented for various values of these parameters for fixed rates of insertion and extraction, with boundary conditions applied to particles similar to those found in a battery. Stress and lithium concentration profiles for various values of these parameters show that the coupling between stress and concentration is magnified depending on the values of the parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.