Abstract

Herein, the effect of Sm on precipitates, grain sizes, and tensile properties of AZ31–0.3La alloy is investigated. Results indicate that Sm is almost dissolved in α‐Mg matrix with 0.2% content, whereas Al2Sm with two kinds of morphologies forms with further Sm addition. The grain sizes of as‐cast studied alloy increase first and then decrease with increasing Sm addition, whereas the dynamic recrystallization (DRX) grain sizes decrease first and then increase, and the DRX grain size distribution is uniform first and then uneven. During the hot extrusion process, the refinement of DRXed grains is attributed to the particle‐stimulated nucleation (PSN) mechanism. The Rp0.2 (yield strength) of as‐extruded studied alloy is changed from twin‐dominated to slip‐dominated by 0.2% Sm addition, and the basal texture is slightly weakened due to the refined DRX grains and even‐distributed grain size distribution, and the minor solute Sm atoms segregating at grain boundaries. Finally, the Rp0.2 of the as‐extruded AZ31–0.3La alloy is gradually enhanced with increasing Sm addition, and the A (elongation) is increased to 25% with 0.2% Sm addition and maintains to about 20% with 0.6–1.7% Sm addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.