Abstract

AbstractThe interplay of physical layer enhancements and classic random access protocols is the objective of this paper. Successive interference cancellation (SIC) is among the major enhancements of the physical layer. Considering the classic representatives of random access protocols, Slotted ALOHA and Channel Sensing Multiple Access (CSMA), we show that two regimes can be identified as a function of the communication link spectral efficiency. In case of high levels of spectral efficiency, multi-packet reception enabled by SIC is of limited benefit. Sum-rate performance is dominated by the effectiveness of the Medium Access Control (MAC) protocol. On the contrary, for low spectral efficiency levels, sum-rate performance is essentially dependent on physical layer SIC capability, while the MAC protocol has a marginal impact. Limitations due to transmission power dynamic range are shown to induce unfairness among nodes. However, the unfairness issue fades away when the system is driven to work around the sum-rate peak achieved for low spectral efficiency. This can also be confirmed by looking at Age of Information (AoI) metric. The major finding of this work is that SIC can boost performance, while still maintaining a fair sharing of the communication channel among nodes. In this regime, the MAC protocol appears to play a marginal role, while multi-packet reception endowed by SIC is prominent to provide high sum-rate, low energy consumption, and low AoI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call