Abstract
The SHIP1 (SH2-containing inositol-5'-phosphatase 1) acts as a negative regulator of proliferation, survival and end cell activation in haemopoietic cells. It does so, at least in part, by translocating to membranes after extracellular stimulation and hydrolysing the phosphoinositide 3-kinase-generated second messenger, PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). SHIP1(-/-) mice have, as a result, an increased number of neutrophils and monocyte/macrophages because their progenitors display enhanced survival and proliferation. These mice also suffer from osteoporosis because of an increased number of hyperactive osteoclasts and a significant neutrophil infiltration of the lungs. Interestingly, SHIP1(-/-) mice do not display endotoxin tolerance and we have found that lipopolysaccharide-induced endotoxin tolerance is contingent on up-regulating SHIP1, through the production of autocrine-acting transforming growth factor-beta, in bone-marrow-derived macrophages and mast cells. Intriguingly, unlike bone-marrow-derived macrophages, SHIP1(-/-) peritoneal and alveolar macrophages produce 10-fold less NO than wild-type macrophages because these in vivo-generated macrophages have very high arginase I levels and this enzyme competes with inducible nitric oxide synthase for the substrate L-arginine. It is probable that, in the face of chronically increased PtdIns(3,4,5)P(3) levels in their myeloid progenitors, SHIP1(-/-) mice display a skewed development away from M1 (killer) macrophages (which have high inducible nitric oxide synthase levels and produce NO to kill microorganisms and tumour cells), towards M2 (healing) macrophages (which have high arginase levels and produce ornithine to promote host-cell growth and collagen formation). This skewing probably occurs to avoid septic shock and suggests that the phosphoinositide 3-kinase pathway plays a critical role in programming macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.