Abstract

The present-day Eurasia-Africa plate convergence offshore SW Iberia gives rise to a diffuse plate boundary marked by deep lithospheric thrust and strike-slip faults. The Horseshoe Abyssal Plain Thrust (HAT) stands out as a key structure accommodating plate convergence, and it has been the site of deep (> 30 km depth) and large magnitude (Mw > 6) earthquakes. Additionally, the HAT has been proposed to be the source of the 1755 Lisbon earthquake (estimated Mw≥8.5), one of the most destructive earthquakes and tsunami in the history of Europe. The geometry of the fault and the physical properties of rocks surrounding it have been determined through tomographic models derived from controlled-source seismic data. Although large earthquakes along the HAT primarily occur at considerable depths within the peridotitic mantle (~40 km depth), the fault intersects a region of serpentinized mantle at shallower depths (10-20 km depth). In contrast to peridotite that undergoes seismic deformation, the frictional behaviour of serpentinized peridotite depends on factors such as pressure, water content, temperature, and slip velocity. Laboratory measurements indicate that serpentinite transitions from rate-strengthening behaviour at plate tectonic rates to rate-weakening at seismic slip rates. This dual nature suggests that large deep earthquakes, nucleated in pristine peridotite, could rupture seismically through the weaker serpentinized peridotite. While this mechanism has been proposed to explain the HAT's potential to generate large tsunamigenic earthquakes, it remains untested. In this study, we use dynamic rupture numerical simulations to investigate the role of serpentinized peridotite in the rupture process and the tsunamigenic potential of the HAT. In particular, we explore various frictional scenarios to determine the slip pattern necessary to account for the previously estimated tsunamigenic uplift associated with the 1755 Lisbon earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call