Abstract

Different approaches have been followed to characterize the role of 5-hydroxytryptamine (serotonin) receptor 7 (5-HT7) in the regulation of sleep-wake behavior: (1) 5-HT7 receptor knockout mice spend less time in rapid eye movement sleep than their wild-type counterparts, mainly during the light period. In contrast, there is no difference between the genotypes in time spent in wakefulness or slow-wave sleep. (2) Systemic administration of the selective 5-HT7 receptor agonist LP-211 significantly increased wakefulness (time spent awake) and reduced rapid eye movement sleep in the rat. Direct infusion of LP-211 into the dorsal raphe nucleus, locus coeruleus nucleus, basal forebrain (horizontal limb of the diagonal band of Broca), or laterodorsal tegmental nucleus also produced a decrease in rapid eye movement sleep. Additionally, microinjection of the 5-HT7 receptor agonist into the basal forebrain augmented the time animals remained awake. Local injection of the 5-HT7 receptor agonist LP-44 into the dorsal raphe nucleus also suppressed rapid eye movement sleep in the rat. (3) A similar reduction of rapid eye movement sleep has been described following intraperitoneal injection of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 in the rat and oral administration of the 5-HT7 receptor antagonist NJ-18038683 to rat and man. Local microinjection of SB-269970 into the dorsal raphe nucleus and basal forebrain also induced a decrease in rapid eye movement sleep in the rat. This tends to suggest that the on-off (activation/blockade), two-state ligand-receptor interaction model is not tenable for the 5-HT7 receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.