Abstract

Simple SummaryEnvironmental stresses are one of the biggest threats to modern agriculture, and climate change has heightened the risks of these stresses in different parts of the world. Among all the environmental stresses, salinity and drought are a severe threat to arid and semi-arid regions of the world, and for a long time, scientists have been searching for ways to reduce the risk of these stresses. In recent decades, solutions have been developed to reduce the risk of environmental stress on plants by identifying beneficial soil microorganisms. This study was conducted to identify morphophysiological and molecular changes of plants in coexistence with Serendipita indica and their impact on drought and salinity stress reduction. The study also has investigated the stressors’ impact on plants and the plants’ mechanisms to cope with them; Furthermore, sharing results with researchers provides a clear path for future research.Plant stress is one of the biggest threats to crops, causing irreparable damage to farmers’ incomes; Therefore, finding suitable, affordable, and practical solutions will help the agricultural economy and prevent the loss of millions of tons of agricultural products. Scientists have taken significant steps toward improving farm productivity in the last few decades by discovering how beneficial soil microorganisms enhance plant resistance to environmental stresses. Among these microorganisms is Serendipita indica, which the benefits of coexisting this fungus with plant roots have been extensively explored in recent years. By investigating fungus specification and its effects on plants’ morphological, physiological, and molecular traits, the present study seeks to understand how Serendipita indica affects plant resistance to salinity and drought conditions. Furthermore, this study attempts to identify the unknown mechanisms of action of the coexistence of Serendipita indica with plants in the face of stress using information from previous studies. Thus, it provides a way for future research to assess the impact of this fungus on tackling environmental stresses and enhancing agricultural productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.