Abstract

Electrostatic layer-by-layer thin films may be directed to specific regions of a surface based on electrostatics, secondary interactions, and steric repulsion. In this study, a series of polyamines ranging from hydrophobic polyallylammonium hydrochloride (PAH) to hydrophilic linear polyethyleneimine (LPEI) were coadsorbed with poly(acrylic acid) (PAA) onto patterned self-assembled monolayer (SAM) surfaces. When an acid (COOH) and oligoethylene glycol (EG) SAMs are used as the surface template, it was found that the region of preferred deposition for the more hydrophobic polyamine species was generally the EG region at pH 4.8, rather than the partially charged COOH region. The more hydrophilic LPEI species preferred adsorption on the COOH surface. It is proposed that PAH undergoes complexation with the EG surface based on hydrophobic and hydrogen bonding interactions at moderate pH. On the other hand, the LPEI backbone is hydrated and is thought to undergo large steric repulsion with the EG surface, thus resulting in deposition only on the COOH surface. The region of preferred adsorption also varied with pH, as the hydrogen-bonding interaction of PAA became important at low pH, and electrostatic interactions became the controlling element for selectivity at high pH, when all systems were highly charged. By tuning polyion−surface interactions, the region of polyion deposition can be carefully controlled on patterned chemical surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.