Abstract

This paper proposes a sustainable and facile approach for the synthesis of photocatalysts in which shell waste is used as support material. The synthesized photocatalysts exhibited a significant performance in the mineralization of organic substances under solar irradiation or artificial lighting. Calcined abalone shell with a TiO2 loading of 23.4% led to a significant improvement in optical absorption: the degradation efficiencies of methylene blue (MB) after 140 min under UV light, vis light, UV–vis light, and natural sunlight were 93%, 96%, 100%, and 100%, respectively. Notably, the byproducts obtained after the degradation by commercial P25 TiO2 disappeared with the utilization of shell waste as support material. The Na, Sr, S present in the calcined abalone shell were doped into the substitutional sites of TiO2 and were indispensable to achieve the desired band-gap narrowing and photocatalytic performance; moreover, the Ti and Zn oxides in the calcined abalone shell acted as semiconductors and improved the charge separation efficiency of TiO2. Above all, this paper describes a green synthesis based on the use of waste seashell. This material acts as an excellent photocatalyst support for environmental pollution treatments, leading to the ‘control of waste by waste’ and opening up new possibilities for shell waste reutilization and sustainable chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call