Abstract

We study the effects of the scalar-isovector meson δ and those of a new light scalar-isovector resonance ς on the phase transition of hadronic matter to hadronic matter with a condensate of antikaons, using an effective model with derivative couplings. In our formalism, nucleons interact through the exchange of σ, ω, ϱ, δ, and ς mesons in the presence of electrons and muons to accomplish electric charge neutrality and beta equilibrium. The phase-transition to the antikaon condensate was implemented through the Gibbs conditions combined with the mean-field approximation, giving rise to a mixed phase of coexistence between nucleon matter and the condensed antikaons. Scalar-isovector mesons operate for restoring isospin symmetry and reduce this way the value of the effective nucleon mass, independent of the depth of the optical potential for antikaons. Moreover, as expected we found that an increase of the depth of optical potential favors the population of antikaons. Finally, assuming neutrino-free matter, we observe a rapid decrease of the electron chemical potential produced by the gradual substitution of electrons by kaons to accomplish electric charge neutrality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.