Abstract
Continental shelves have generally been interpreted as drowned coastal plains associated with the allogenic effect of sea-level variation. Here, without disputing this mechanism we describe an alternative autogenic mechanism for subaqueous shelf formation, driven by the presence of dissolved salt in seawater and surface waves. We use a numerical model describing flow hydrodynamics, sediment transport, and morphodynamics in order to do this. More specifically, we focus on two major aspects: 1) the role of saltwater in the subaqueous construction of continental shelves and 2) the transformation of these shelves into seaward-migrating clinoforms under the condition of repeated pulses of water and sediment input and steady wave effects, but no allogenic forcing such as sea-level change. In the case for which the receiving basin contains fresh water of the same density as the sediment-laden river water, the hyperpycnal river water plunges to form a turbidity current that can run out to deep water. In the case for which the receiving basin contains sea water but the river contains sediment-laden fresh water, the hypopycnal river water forms a surface plume that deposits sediment proximally. This proximate proto-shelf can then grow to wave base, after which wave-supported turbidity currents can extend it seaward. The feature we refer to is synonymous with near-shore mud belts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.