Abstract

In this paper we studied the migration of secondary particles in tape casting of a non-Newtonian ceramic slurry through a generalised local viscosity function in order to obtain the particle distribution along tape thickness. The particle distribution was then used to calculate porosity and permeability of the tapes. We, moreover, linked the aforementioned results to a coupled free-flow-porous-media model on the representative elementary volume (REV) scale for simulating room-temperature drying of the tapes with flow of a relatively dry air (relative humidity of 25%). Finally, we investigated the influence of rheological parameters, i.e. the power-law index, η, and the consistency factor, m, of a typical Ostwald–de Waele power-law fluid on the resultant drying behaviour of the tapes. The results showed that the low consistency and low power-law index values reduce the drying rate (slightly) as well as the final drying time, that favours the manufacturing of tapes by reducing the risk of crack initiation/growth in ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.