Abstract

AbstractA statistical model is said to be an order‐restricted statistical model when its parameter takes its values in a closed convex cone C of the Euclidean space. In recent years, order‐restricted likelihood ratio tests and maximum likelihood estimators have been criticized on the grounds that they may violate a cone order monotonicity (COM) property, and hence reverse the cone order induced by C. The authors argue here that these reversals occur only in the case that C is an obtuse cone, and that in this case COM is an inappropriate requirement for likelihood‐based estimates and tests. They conclude that these procedures thus remain perfectly reasonable procedures for order‐restricted inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.