Abstract
Growth of the freshwater cyanobacterium Synechococcus 6311 under saline conditions stimulated respiration tenfold during the first 24 h, while growth and photosynthesis were inhibited. The elevated respiration rate was seen under both light and dark conditions, was uncoupler and cyanide sensitive, and did not decrease upon salt removal. Membrane preparations from salt-grown cells exhibited a tenfold increase in cytochrome oxidase activity, while electron transfer rates from NADPH to cytochrome c only increased threefold. Cytochrome oxidase activities were correlated with levels of EPR detectable Cu 2+ in the salt and control membranes. Sodium-driven proton (antiproter) gradients in salt-grown cells were sensitive to cyanide but not dicyclohexylcarbodiimide, indicating the direct role of respiratory electron transport in maintaining low intracellular sodium levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.