Abstract

Long-term survival of nonreplicating Mycobacterium tuberculosis (Mtb) is ensured by the coordinated shutdown of active metabolism through a broad transcriptional program called the stringent response. In Mtb, this response is initiated by the enzymatic action of RelMtb and deletion of relMtb produces a strain (H37RvDeltarelMtb) severely compromised in the maintenance of long-term viability. Although aerosol inoculation of mice with H37RvDeltarelMtb results in normal initial bacterial growth and containment, the ability of this strain to sustain chronic infection is severely impaired. Significant histopathologic differences were noted in lungs and spleens of mice infected with H37RvDeltarelMtb compared with controls throughout the course of the infection. Microarray analysis revealed that H37RvDeltarelMtb suffers from a generalized alteration of the transcriptional apparatus, as well as specific changes in the expression of virulence factors, cell-wall biosynthetic enzymes, heat shock proteins, and secreted antigens that may alter immune recognition of the recombinant organism. Thus, RelMtb is critical for the successful establishment of persistent infection in mice by altering the expression of antigenic and enzymatic factors that may contribute to successful latent infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.