Abstract
The observation of electric dipole moments (EDMs) in atomic systems due to parity and time-reversal violating (P,T-odd) interactions can probe new physics beyond the standard model and also provide insights into the matter-antimatter asymmetry in the Universe. The EDMs of open-shell atomic systems are sensitive to the electron EDM and the P,T-odd scalar-pseudoscalar (S-PS) semi-leptonic interaction, but the dominant contributions to the EDMs of diamagnetic atoms come from the hadronic and tensor-pseudotensor (T-PT) semi-leptonic interactions. Several diamagnetic atoms like 129Xe, 171Yb, 199Hg, 223Rn, and 225Ra are candidates for the experimental search for the possible existence of EDMs, and among these 199Hg has yielded the lowest limit till date. The T or CP violating coupling constants of the aforementioned interactions can be extracted by combining the EDM measurements from with atomic and nuclear calculations. In this work, we report the calculations of the EDMs of the above atoms by including both the electromagnetic and P,T-odd violating interactions simultaneously. These calculations are performed by employing relativistic many-body methods based on the random phase approximation (RPA) and the singles and doubles coupled-cluster (CCSD) method starting with the Dirac-Hartree-Fock (DHF) wave function in both cases. The differences in the results from both the methods shed light on the importance of the non-core-polarization electron correlation effects that are accounted for by the CCSD method. We also determine THE electric dipole polarizabilities of these atoms, which have computational similarities with EDMs and compare them with the available experimental and other theoretical results to assess the accuracy of our calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.