Abstract

Cancer dormancy is a clinical state in which residual tumor cells persist for long periods of time but do not cause detectable disease. In the mouse B cell lymphoma model (BCL1), dormancy can be induced and maintained by immunizing mice with a soluble form of the IgM expressed on the surface of the tumor cells. Immunization induces an anti-idiotype antibody response that maintains dormancy. Mice with dormant tumor have low numbers of BCL1 cells in their spleens that divide and are killed at the same rate. When the anti-Id antibodies wane, the tumor cells grow rapidly and kill the host. Spleens from tumor-bearing mice contain both effector (CD4+ and CD8+) and regulatory T cells (Tregs). In other tumor models, it has been reported that Tregs promote tumor progression by preventing effector cells from killing the tumor. In this report, we demonstrate that the tumor site with rapidly dividing BCL1 cells has fewer Tregs than the tumor site harboring dormant BCL1 cells. In both cases, the Tregs were equally suppressive in vitro. In spleens from mice with actively growing tumor, CD8+ but not CD4+ T cells were virtually absent. In vitro analysis demonstrated a tumor-mediated elimination of CD8+ T cells that was contact dependent and involved the caspase-3 pathway. Most importantly, we found that the BCL1 cells expressed characteristics of B10 regulatory B cells, i.e., they were CD1dhiCD5+ and secreted high levels of IL-10. These BCL1 tumor cells can inhibit anti-tumor immune responses by depleting CD8+ effector T cells.

Highlights

  • The tumor site represents a complex microenvironment where malignant cells reconstruct the milieu to promote tumor growth while anti-tumor immune responses aim to eliminate tumor cells

  • Our results suggest that cross-talk between malignant Bregs and different types of normal effector T cells might be extremely important in the growth vs. stasis of Breg-like tumors, such as chronic lymphocytic leukemia (CLL), in humans

  • Serum titers of anti-Id measured on D+60, the time-point for dormancy, from mice bearing dormant BCL1 tumors were 13-fold higher than those with non-dormant tumor cells on

Read more

Summary

Introduction

The tumor site represents a complex microenvironment where malignant cells reconstruct the milieu to promote tumor growth while anti-tumor immune responses aim to eliminate tumor cells. Anti-tumor immunity can induce quiescence or dormancy in tumor cells. Cancer dormancy is a clinical state in which tumor cells are present in clinically healthy subjects but are maintained in a steady state; yet relapses can occur years later [1]. Many cancer patients who are in complete remission have circulating tumor cells (CTCs) in their blood or bone marrow [2, 3] and the presence of these cells suggests that tumor is present but probably dormant [4].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call