Abstract

N6-methyladenosine (m6A) modification is found the most prevalent and abundant post-transcriptional mRNA modification in eukaryotic cells. It regulates almost all stages of RNA life cycle including splicing, translocation, stability, decay and translation. As a dynamic and reversible process, m6A modification is catalyzed by the RNA methyltransferases (‘writers’), removed by the demethylases (‘erasers’), and interacts with m6A-binding proteins (‘readers’). Recent studies have revealed that these m6A modification regulators are frequently expressed aberrantly in various types of cancer, and involved in cell proliferation, differentiation, metabolism, particularly, in tumorigenesis and tumor progression through diverse mechanisms. In this review, the m6A modification process and its regulatory functions in lung cancer are summarized. Furthermore, the research progress in the inhibitor development of m6A modification, and the potential of targeting m6A modifying proteins for clinical application are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call