Abstract

Photosynthetic oxygen-evolving center (OEC), the "engine of life", is a unique Mn4CaO5 cluster catalyzing the water oxidation. The role of redox-inactive component Ca2+, which can only be functionally replaced by Sr2+ in a biological environment, has been under debate for a long time. Recently, its modulating effect on the redox potential of native OEC and artificial structural OEC model complex has received great attention, and linear relationship between the potential and the Lewis acidity of the redox-inactive metal has been proposed for the MMn3O4 model complex. In this work, the modulating effect has been studied in detail using the Mn4CaO4 model complex, which is the closest structural model to OEC to date and has a similar redox potential at the S1-S2 transition. We found the redox-inactive metal only has a weak modulating effect on the potential, which is comparable in strength to that of the ligand environments. Meanwhile, the net charge of the complex, which could be changed along with the redox-inactive metal, has a high impact on the potential and can be unified by protonation, deprotonation, or ligand modification. Although the modulating effect of the redox-inactive metal is not very strong, the linear relationship between the potential and the Lewis acidity is still valid for Mn4MO4 complexes. Our results of strong modulating effects for net charge and weak modulating effects for redox-inactive metal fit with the previous experimental observations on Mn4MO4 (M = Ca2+, Y3+, and Gd3+) model complexes, and suggest that Ca2+ can be structurally and electrochemically replaced with other metal cations, together with proper ligand modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.