Abstract

Patients with hemophilia have an impaired thrombin generation and therefore form loose fibrin hemostatic plugs that are easily dissolved by fibrinolysis. This prevents maintained hemostasis in these patients, resulting in a severe bleeding disorder. Recombinant (F)VIIa has been shown to enhance thrombin generation on already thrombin-activated platelets in the absence of FVIII and FIX. An efficacy rate of 80-90% has been found in hemophilia patients with inhibitors against FVIII or FIX both in association with major surgery and in the treatment of serious bleedings. In a model measuring fibrin clot permeability in a platelet-containing system described by Blombäck et al. (1994) this was demonstrated to be dependent on the concentration of FVIII and FIX. The addition of rFVIIa in concentrations of 1.9, 4.8 and 9.6 microg mL(-1) normalized fibrin clot permeability. The concentration of 1.9 microg mL(-1) of rFVIIa normalized clot permeability in this system and the higher concentrations of rFVIIa added only slightly to the effect. No further decrease in clot permeability was found when rFVIIa in a concentration of 1.9 microg mL(-1) was added to a sample with a normal concentration (100%) of FVIII or FIX. Higher concentrations of rFVIIa added to the plasma containing 100% of FVIII or FIX induced only a slight further decrease of fibrin permeability constant, arguing against any unwanted effect of extra rFVIIa on clot permeability in the case of a normal hemostasis. Furthermore, the fibrin network was studied with 3D microscopy and the loose network found in the absence of FVIII or FIX increased in density with increasing FVIII or FIX concentrations. The addition of rFVIIa to FVIII- or FIX-deficient systems altered the network structure, making the fibers thinner and more tightly packed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.