Abstract
One of the major hurdles facing the application of adenoviral gene transfer to skeletal muscle is the maturation-dependent transduction of muscle myofibers. It was recently proposed that the viral receptors (Coxsackie and adenovirus receptor (CAR) and the integrins alphavbeta3/beta5) play a major role in the poor adenoviral transduction of mature myofibers. Here we report the findings of morphological studies designed to determine experimentally the role of receptors in the adenoviral transduction of mature myofibers. First, we observed that the expression of both attachment and internalization receptors did not change significantly during muscle development. Second, when an extended tropism adenoviral vector (AdPK) that attaches to heparan sulfate proteoglycan (HSP) is used, a significant reduction of adenoviral transduction still occurs in mature myofibers despite HSP's high expression in mature skeletal muscle fibers. Third, when the adeno-associated virus (AAV) is used, which also utilizes HSP as a viral receptor, muscle fibers at different maturities can be highly transduced. Fourth, the pre-irradiation of the skeletal muscle of newborn mice to inactivate myoblasts dramatically decreased the transduction level of Ad and AdPK, but had no effect on AAV-mediated viral transduction of immature myofibers. These results taken together suggest that the viral receptor(s) is not a major determinant in maturation-dependent adenoviral transduction of myofibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.