Abstract
Oxcarbazepine (OXC) is ubiquitous in the aqueous environment. And due to its ecotoxicological effects and potential risks to human, an effective way to eliminate OXC from aqueous environment has aroused public concerns in recent years. Radical-based reactions have been shown to be an efficient way for OXC destruction, but the reactions of OXC with reactive oxygen species (ROS) and carbonate radical (CO3•−) are still unclear. In this study, we focused the degradation of OXC and ROS, CO3•− generation mechanism, and their roles in OXC degradation via UV and UV/H2O2. The triplet state of oxcarbazepine (3OXC∗) was found to play an important role in OXC degradation via UV. And hydroxyl radicals (•OH) and singlet oxygen (1O2) were found to be the dominant ROS in OXC degradation. Superoxide radical (O2•−) did not react with OXC directly, but it may react with intermediate byproducts. Generation of CO3•− played a positive role on OXC degradation for both UV and UV/H2O2. In addition to •OH, 3OXC* also contribute to CO3•− production. The second-order rate constants of OXC with •OH and CO3•− were 1.7 × 1010 M−1 s−1 and 8.6 × 107 M−1 s−1, respectively. Potential OXC degradation mechanisms by •OH were proposed and included hydroxylation, α-ketol rearrangement, and benzylic acid rearrangement. Compared with non-selective •OH, the reactions involving CO3•− are mainly electron transfer and hydrogen abstraction. And the acute toxicity of OXC was lower after UV/H2O2 and UV/H2O2/HCO3− treatments, which was confirmed by luminescent bacterial assay (Vibrio fischeri bacterium).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.