Abstract

Pure and rare-earth metal [Yttrium (Y), Ruthenium (Ru) and Caesium (Cs)]-doped ZnO thin films were deposited onto In-doped SnO2 substrates by chemical bath deposition. The present study detailed investigated the effect of rare-earth metal-doped ZnO on NH3 gas sensing. X-ray diffraction analysis indicated that the incorporated rare-earth metal ions substitute Zn sites in the ZnO lattice. Dimension of ZnO films decreased with rare-earth metal doping which detected from surface morphology images. The response of 100 ppb NH3 gas was calculated to be 0.80 (200 °C), 14.00 (90 °C), 17.00 (50 °C), and 10.00 (120 °C) for the pure, Y-, Ru-, and Cs-doped ZnO films, respectively. In addition, the response of 15 ppm NH3 gas at room temperature was calculated to be 0.20, 27.00, 57.00, and 18.00 for undoped Y-, Ru-, and Cs-doped ZnO films, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.