Abstract

The extensive application of long-range corrected hybrid functionals highlights the importance of further improving their accuracy. Unlike common long-range corrected hybrid functionals mainly focusing on the exchange part, range-separated correlation and its role in long-range corrected hybrid functionals are the main concerns of this work. To this end, we present theory on the derivation of the range-separated correlation, whose reliability and validity are proved by the agreement with the full CI on the test of the short-range correlation energy. The tests on various properties indicate that the long-range part of the LYP functional cannot effectively capture the long-range correlation effect required in LC-BLYP, whose absence instead results in a better XC functional. This new functional significantly improves LC-BLYP on all the tests in this work, with an accuracy on par with or even greater than the widely recognized CAM-B3LYP method for some applications, while maintaining the important -1/r asymptotic behavior of the XC potential. The advances and insights gained in this work are useful for the application and development of long-range corrected hybrid functionals, while emphasizing the significance of developing effective and low-cost long-range correlation functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.