Abstract

The nature of the chemical bond in conjugated hydrocarbons is analyzed through the generalized product function energy partitioning (GPF-EP) method, which allows the calculation of the quantum-mechanical interference and quasi-classical contributions to the energy. The method is applied to investigate the differences between the chemical bonding in conjugated and non-conjugated hydrocarbon isomers and to evaluate the contribution from the energy components to the stabilization of the molecules. It is shown that in all cases quantum-mechanical interference has the effect of concentrating π electron density between the two carbon atoms directly involved in the (C-C)π bonds. For the conjugated isomers, this effect is accompanied by a substantial reduction of electron density in the π space of the neighbouring (C-C)σ bond. On the other hand, quasi-classical effects are shown to be responsible for the extra stabilization of the conjugated isomers, in which a decrease of the π space kinetic reference energy seems to play an important role. Finally, it is shown that the polarization of p-like orbitals in compounds with alternating single and double bonds ultimately increases electron density in the π space of the neighbouring (C-C)σ bond. Therefore, quasi-classical effects, rather than covalent ones, seem to be responsible for several properties of conjugated molecules, such as thermodynamic stability, planarity and (C-C)σ bond shortening. The shortcomings of the delocalization concept are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call