Abstract

Re-feeding 24-h-starved lactating rats resulted in a rapid (within 0.5 h) restoration of glucose uptake by the mammary gland and a slower (within 3 h) restoration of fatty acid synthesis. The rapid reactivation of glucose uptake (82% of fed value within 0.5 h of re-feeding) correlated with a rapid reactivation of 6-phosphofructo-1-kinase (6-PF-1-K) and glycolysis (as determined by a 97% decrease in the [fructose-6-phosphate]/[fructose-1,6-bisphosphate] ratio). This could not be fully explained by a fall (29%) in the tissue concentration of its allosteric inhibitor, citrate. The delayed reactivation of pyruvate dehydrogenase (PDH) correlated very closely with the delayed reactivation of fatty acid synthesis and explained the continued output of pyruvate and lactate within the first 0.5 h of re-feeding. PDH reactivation preceded the reactivation of acetyl-CoA carboxylase (ACC), which did not occur significantly until 1.5 h of re-feeding. ACC reactivation correlated with a decrease in the tissue concentration of citrate and a second late phase of 6-PF-1-K activation. It is clear that the important regulatory steps 6-PF-1-K, PDH and ACC, are reactivated asynchronously in the lactating mammary gland in response to re-feeding starved rats and that PDH is more important than ACC in the regulation of fatty acid synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call